
An Evolvable Hardware Approach

T. S. P. C. Duque1 and A. C. B. Delbem1

Instituto de Ciencias Matematicas e de Computacao – Universidade de Sao Paulo
(USP)

Av. Trabalhador Sao-carlence, 400 – 13.566-590 – Sao Carlos – SP – Brasil
thyago@grad.icmc.usp.br, acbd@icmc.usp.br

Abstract. Hardware based systems shows in general better performance
for embedded applications than those based on software. Software based
systems use a generic purpose processor, which is not adequate for sev-
eral problems. Hardware systems, on the other hand, are in general very
inflexible. Many hardware solutions cannot be updated. Even when this
process is possible, it requires specific knowledge and tools.
The proposed system aims at investigating a solution for these drawbacks
involving hardware systems. The proposal is based on an Evolutionary
Algorithm to reconfigure Field Programmable Gate Arrays.

1 Introduction

This work proposes the use of Evolutionary Algorithms and Field Programmable
Gate Arrays to produce an intelligent hardware system with adaptive capabili-
ties.

This system could be used for real embedded applications, in fields where
few systems can achieve the required performance. Several problems cannot be
efficiently solved using generic purpose processors as, for example, embedded
systems. For these problems, dedicated hardware solutions are in general em-
ployed. On the other hand, these hardware solutions are too inflexible and may
become obsolete with small changes on problem requirements. If these require-
ments are expected to often change, reconfigurable systems have been the usual
solution.

However, reconfigurable systems are in general difficult and expansive to
be built. In order to overcome this drawback, we propose a self-reconfigurable
approach, based on Evolutionary Algorithms. This approach can reconfigure a
FPGA until it becomes a dedicated system for the target problem. Moreover,
this process never finishes since the system continues to evolve and adapt to the
problem when its requirements change.

2 Evolutionary Algorithms

Evolutionary Algorithms (EAs) have been largely employed for complex design
problems [5], [7], combinatorial optimization [8], [10] and multi-objective prob-
lems [3], [4], [8]. Moreover EAs are plausible solution strategies for problems

© A. Gelbukh, C.A. Reyes-García. (Eds.)
Advances in Artificial Intelligence.
Research in Computing Science 26, 2006, pp. 37-47

Received 03/06/06
Accepted 03/10/06

Final version 10/10/06

requiring adaptive capabilities. In this way, we choose an evolutionary approach
to guide the FPGA reconfiguration.

An EA has typically the following characteristics. A set (named population)
of solutions (named individuals) is generated at random. At each iteration, or
generation, evolutionary operators are applied to the individuals modifying them
and generating new individuals. In order to compose the new population a selec-
tion strategy and a criteium of adequacy for the target problem are employed.
This criterium is named fitness. The selected individuals compose a new popu-
lation. After several generations, the EA produce a population with individuals
that should correspond to adequate solutions. Several relevant references about
EAs are available in the literature [3], [4], [8], [9], [10], [11].

3 Field Programmable Gate Arrays

For problems whose requirements are expected to change often, reconfigurable
systems have been the usual solution. The EA can be considered the intelligence
of the proposed system, the FPGA can be viewed as its physical component. It
holds the IO interfaces, stores the system logic and executes the processing.

A FPGA is a hardware system designed to hold another hardware system.
It is composed by a set of logical blocks or elements and a set of connections
among them. In an ideal architecture, there would be one connection between
each pair of elements and one connection between each element and each IO
port. This architecture however is not necessary for most real problems and is
too expansive and complex to implement. Real FPGA uses only a subset of this
complete set of connections.

The FPGA works as follow. The input ports have the function of reading
external signals from the environment. These signals are propagated through the
connections and logical elements until they reach an output port. During this
route, the logical elements modify the signals according to a FPGA configuration.
Once the signals are stabilized in the output ports, they produce the output of
the system. Introductory references about FPGA architectures can be found
in [1], [2], [12].

4 FPGA and EA Integration

The architecture of the FPGA is very important since it defines the complexity
of the problems the FPGA can be used to solve. The architecture has also large
influence on the EA efficiency to reconfigure the FPGA.

If the architecture is too complex, the FPGA can be employed for a wide
range of problems. On the other hand, complex architectures can reduce the EA
performance. It is important to define architectures that both give the system
enough power to solve relatively complex problems and also allow an efficient
EA for FPGA reconfiguration.

38 T. S. P. C. Duque and A. C. B. Delbem

In this way, the first step to build the proposed system should be the definition
of the FPGA architecture. The second step is the definition of the data struc-
ture (named chromosome in EAs) to computationally represent the architecture.
From the chromosome, evolutionary operators are elaborated. Afterward, a Fit-
ness function and a selection method are determined according to the target
problem characteristics.

4.1 Architecture of the FPGA

The FPGA architecture plays an important role for the proposed system, both
determining the FPGA capability of solving problems and the EA performance.
This section describes the employed architecture.

The proposed architecture organizes the FPGA as a logical element matrix.
Each logical element receives n input signals and produces one output signal. In
FPGAs, a logical element is built as an array of 2n binary memory units. Each
memory can store one single bit. One of these bits is selected using the input
signals and multiplexers. Figure 1 shows an architecture example, where S1, S2
and S3 are the received signals and f is the produced output.

0 / 1

0 / 1

0 / 1

0 / 1

0 / 1

0 / 1

0 / 1

0 / 1

S1

S2

S3

f

Fig. 1. Architecture of a Logical Element

Each element in the matrix has two indexes indicating its line and column
in the architecture. Given a block in line l, each input terminal of this block can
be connected to the output terminal of any block in line l-1. Figure 2 shows the
proposed architecture.

The elements in the first line have their input terminals connect to the FPGA
input ports. They transmit signals from environment through the FPGA. The
output terminals of the elements in the last line are also the output ports of the
FPGA. Then, a FPGA of c columns will also have c output terminals.

An Evolvable Hardware Approach 39

Logical Element

Input/Output of
Logical Element

Internal Bus

I/O
Terminal

FPGA`s Architecture

Fig. 2. Architecture of the FPGA

4.2 Individual Representation and Evolutionary Operators

Based on the architecture described in Section 4.1, individual’s computational
representation (chromosome) was defined as follow. Each logic element is rep-
resented as a string with 2n bits, where n is the number of input terminals in
the element. Based on this string of bits, we define the evolutionary operators:
crossover and mutation.

The crossover operator is applied to two individuals named father1 and fa-

ther2, generating two new individuals named child1 and child2. This operator
generates a random mask of 2n bits used to alter the bit string producing a new
one. For each position of the bit string, if the bit in the mask is 0, child1 keeps
the corresponding bit value from father1 and child2 retains the corresponding
bit value from father2. If the bit in the mask is 1, child1 keeps the bit value from
father2 and child2 retains the bit value from father1.

The mutation operation is applied to one individual, and generates a new
individual. It consists on the negation of a random bit from a bit string of the
individual.

The connections among elements are represented as an array of n integers.
Each element in a line of the architecture has an array of integers indicating
the connections of this element with the elements of previous line. The muta-
tion operator alters element connections by randomly changing the value of one
position in the array.

A chromosome is structured as a pair composed by a logical element matrix
and a connection matrix. The former can be changed by a crossover operator
that consists of the recombination of each logical element from father1 with the
logical element in the corresponding position from father2. This process generates

40 T. S. P. C. Duque and A. C. B. Delbem

two children. The mutation operator for the logical element matrix consists on
randomly choosing a matrix position and altering the corresponding element.

The connection matrix mutation process is similar to the mutation of logical
element matrix. For the connection matrix no crossover operator is employed.

It is important to notice that small changes in the logical element matrix
produce small changes on how the FPGA works. However, small changes on the
connection matrix may drastically affects the way the FPGA works. Moreover,
a good logical element set for a given connection matrix may be inadequate for
another connection matrix. These characteristics demand an efficient evolution
strategy, which is discussed in Section 4.3.

4.3 Strategies for the Evolution Process

Given a connection matrix, the evolution strategy employed first evolves the
logical element matrix. Only if this matrix is not adequate, a new connection
matrix is produced.

This strategy requires two stopping criteria. The first criterion determines
when a satisfactory solution is found. The second criterion decides when the
evolution of a logical element matrix for a given connection matrix should stop.
In this case, the evolution of a logical element matrix is restarted for a new
connection matrix.

As consequence, if a given connection matrix propagates all input signals
to all output signals, it will not be necessary to change it. In this case, it is
possible to reach the expected operation of the FPGA by reconfiguring properly
the logical elements matrix.

If it is possible to create a connection matrix that propagates all input signals
to all output signals, then we should first find this matrix and then run the
EA only for the logical element matrix. This improves the performance of the
proposed system, avoiding unnecessary connection matrix changes.

However, it is not always possible to create connection that propagates all
input signals to all output signals. For example, if the number of columns is
much larger than the number of lines for a FPGA, it is not possible to create
such matrix. In this case, it may be impossible to solve the target problem using
this FPGA, requiring a larger one.

5 Target Problem and Fitness Evaluation

The focus of this work was to produce an efficient EA to configure a FPGA. The
implementation of the proposal on hardware will be performed in a future work.
In order to validate the proposed approach, we use a simulator. The simulation is
a simple, fast and easy procedure to debug and evaluate the developing system.

The simulator was written in Java and the computational efficiency of the
simulator was considered secondary criterion for its evaluation. The main objec-
tive was the investigation of how the EA work with the problem of reconfigura-
tion of FPGAs. Main criterion to evaluate the system is the number of individual
evaluations.

An Evolvable Hardware Approach 41

In order to obtain a target problem which was relatively easy to simulate
and evaluate solutions, we use the one-max problem formulation ??. First, we
generate a random individual named target individual. For all possible inputs
(2n for n input terminals), all possible outputs are generated for the target indi-
vidual. The fitness of an individual is calculated comparing its outputs with the
corresponding outputs of the target individual. The individual score is increased
by one for each bit that matches with the target output. The target individual
score is the maximum score and can be calculated as:

2nInputs
∗ nOutput (1)

where nInput is the number of input ports and nOutput is the number of
output ports.

The simulator works with a population of n individuals. At each generation a
recombination process generates n new individuals. The recombination consists
on the crossover of the logical function matrix of two individuals (say father1 and
father2) of the population. These individuals (father1 and father2) are selected
using the roulette-wheel selection method.

From the resulting population of 2n individuals, n individuals are selected
using a steady state strategy, i.e., the better individual among parent and child
are selected for the next generation. Other selecting strategies are also possible;
however, the reported results were based on this strategy.

6 Statistic Measures of the EA Performance

This section presents statistics showing the performance of the EA. The system
was tested using different combination of the following parameters: number of
individuals on the population (n), size of the FPGA (number of columns c and
lines l), mutation rate (for logical elements only), and convergence criterion.

For the first test, we used a population of 10 individuals (n = 10). The
mutation rate was set to 0. The EA executes until all individuals reach the
maximum score. Each individual is a FPGA of eight lines and eight columns.
Although this FPGA may look small, it is complex enough, for example, to
be applied to a robot navigation problem where robots navigate through the
environment using binary distance sensor [6].

At each run of the EA, the number of generations and running time for
convergence were measured. The data of 2000 executions were then divided into
classes to drawn an approximated graphic of the probability distribution of the
number of generation and running time for convergence of the EA. The interval
between the maximum and the minimum value of the measured data was divided
into subintervals (or classes) of equal length and the number of values on each
class was counted. The relative frequency of each class was calculated as the
number of elements on this class divided by the number of total executions
(2000). This process was applied to both number of generation and running
time.

42 T. S. P. C. Duque and A. C. B. Delbem

Figure 3 shows the approximated probability density for the number of gen-
erations required to all individuals in the population converge. Figure 4 shows
the approximated probability density for the time until the convergence of all
individuals of the population.

Fig. 3. Graphic of the probability distribution of the numb er of generations for
convergence

Fig. 4. Graphic of the probability distribution of the time for convergence

As expected, the graphic for probability distribution for the number of gen-
erations is very similar to the graphic probability distribution for running time.
This occurs since the running time the EA requires to converge is proportional
to the number of generations. There are also other factors that influence the
convergence process; however, they are less important than the number of gen-
erations.

Table 1 presents the main descriptive statistics involving running time and
number of generations for convergence.

An Evolvable Hardware Approach 43

user
Line

Numeber of Generations Time (ms)

Mean 18.572393 949

Mean Deviation 8.58767 421

Minimum 3 186

First Quartile 11 564

Median 15 767

Third Quartile 21 1036

Maximum 141 6960

Table 1. Descriptive statistics

Figure 5 is a box plot of number of generations for convergence without
outliers. Figure 6 shows a box plot including outliers. Box Plots of running time
for convergence are similar to those of number of generations and thus were
omitted.

Fig. 5. Box Plot without Outliers Fig. 6. Box Plot with Outliers

Notice that although the maximum value for the number of generations is
high, the third quartile is low. This means that, for the majority of cases, the
number of generations for convergence is low. Figure 3 confirms this behavior.
Cases with high number of generations were rare and spread. This means that
the system has a good performance and convergence.

The running time required to the EA converge is also low. The mean running
time is lower than 1 second. This shows that we could evolve the system right
on the environment without requiring high performance computers, since this
process should require few minutes in a FPGA.

6.1 Relationships between Parameters and Performance

This section discusses how the parameters affect the system performance and
how the system behaves for more complex problems. First, we investigated the
relationship between the number of individuals in the population and the per-
formance of the system. We used again a FPGA of eight lines and eight columns

44 T. S. P. C. Duque and A. C. B. Delbem

and the convergence of all individuals as stopping criterion. The population size
was set to 2, 5, 7, 8, 10, 15, 20, 50 and 100. For each size 200 runs were performed.

Figure 6.1 shows that the number of generations for convergence depends on
population size. For small population, the diversity of the population is low, and
lots of generations are required for convergence. For medium size populations,
there is already enough diversity, so, few generations are required. For large pop-
ulations it is difficult to converge all individuals, and the number of generations
increases

Figure 6.1 shows that, although the number of generations for small pop-
ulations is high, the running time required is not so high. Moreover, for large
populations, that have low number of generations for convergence, the corre-
sponding running is very high. Figure 9 helps to explain this behavior.

Fig. 7. Relationship b etween p op-
ulation size and numb er of genera-

tions for convergence

Fig. 8. Relationship b etween p opu-
lation size and time for convergence

Fig. 9. Relationship between time to process one generation and population size

For Figures 6.1 and 6.1, the stopping criterion was the convergence of one
individual. As in Figure 6.1 for small populations, the number of generations is
large. As the population size increases, the number of generations decreases. In
contrast with Figure 6.1, the number of generations for convergence does not
increase. This occurs since the convergence of all individuals is not required.

An Evolvable Hardware Approach 45

Fig. 10. Relationship between the
population size and the number of
generations for convergence of one

individual

Fig. 11. Relationship b etween the
p opulation size and the time for

convergence of one individual

Figure 12 shows the influence of mutation operator over the EA performance.
The relationship between mutation rate and EA performance in the proposed
system is not clear.

More accurate statistic investigation of such effects should be carried out.

Fig. 12. Effect of mutation rate

7 Final Considerations

The development of an intelligent system capable of solving real problems with-
out needing general-purpose processors and with self-adapting capabilities for
problem requirement changes is a computational difficult problem. This work
presents a method to create a system with these characteristics using EA and
FPGA.

The proposed system showed satisfactory results for small FPGAs. For larger
systems, the complexity of configuring a FPGA increases and more efficient
approaches should be investigated.

46 T. S. P. C. Duque and A. C. B. Delbem

In order to use more efficient data structures and operators, larger process-
ing capabilities are required. The available processors for embedded system are
in general not adequate to work with complex structures. Hardware modules
to implement complex operators or store large data structures require a large
amount of logical elements, increasing cost and size of the final system.

Definition of the most adequate FPGA size for a problem is also complex.
Large FPGAs are capable of solving hard problems. However, their configuration
is more difficult to be achieved by the EA. On the other hand, the configuration
of small FPGAs is easier, although these FPGAs can only be applied to relatively
simple problems.

The obtained results show that the proposed approach can produce a system
that reaches the requirements of the test problem. Additional aspects of the
proposal could be investigated in future works in order to obtain an improved
system.

8 Acknowledgments

This research was financed by FAPESP (Process N. 04/10394-7), a foundation
of the state of Sao Paulo, Brazil

References

1. Altera. Altera Data Book. 2003.
2. S. Brown and Z. Vranesic. Fundamentals of Digital Logic with VHDL Design.

McGraw Hill, 2000.
3. Lamont G. B. Coello C. A. C., Van Veldhuizen D. A. Evolutionary Algorithms for

Solving Multi-Objective Problems. Kluwer Academic Publishers, 2002.
4. K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley

and Sons, 2001.
5. A.C.B. Delbem, A. C. P. L. F. Carvalho, and Policastro C. A. Node-depth en-

coding for evolutionary algorithms applied to network design. In Lecture Notes in

Computer Science, volume 3102, pages 678–687, 2004.
6. D. Floreano and F. Mondada. Evolution of homing navigation in a real mobile

robot.
7. M. Gen, R. Cheng, and S. S. Oren. Network design techniques using adapted

genetic algorithms. Adv. Eng. Softw., 32(9):731–744, 2001.
8. D. E Goldberg. Genetic Algorithms for search, Optimization, and Machine Learn-

ing. Addison-Wesley, 1989.
9. J. H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, 1975.

10. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer, 1998.

11. D. M. Tate and A. E. Smith. Expected allele coverage and the role of mutation in
genetic algorithms. In Stephanie Forrest, editor, Proc. of the Fifth Int. Conf. on

Genetic Algorithms, pages 31–37, San Mateo, CA, 1993. Morgan Kaufmann.
12. Xilinx. Xilinx Data Book. 2003.

An Evolvable Hardware Approach 47

